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Navigation in social environments, in the absence of
traffic rules, is the difficult task at the core of the an-
nual Tsukuba Challenge. In this context, a better un-
derstanding of the soft rules that influence social dy-
namics is key to improve robot navigation. Prior re-
search attempts to model social behavior through mi-
croscopic interactions, but the resulting emergent be-
havior depends heavily on the initial conditions, in
particular the macroscopic setting. As such, data-
driven studies of pedestrian behavior in a fixed en-
vironment may provide key insight into this macro-
scopic aspect, but appropriate data is scarcely avail-
able. To support this stream of research, we release
an open-source dataset of dynamic object trajectories
localized in a map of 2017 Tsukuba Challenge envi-
ronment. A data collection platform equipped with
lidar, camera, IMU, and odometry repeatedly navi-
gated the challenge’s course, recording observations
of passersby. Using a background map, we localized
ourselves in the environment, removed the static back-
ground from the point cloud data, clustered the re-
maining points into dynamic objects and tracked their
movements over time. In this work, we present the
Tsukuba Challenge Dynamic Object Tracks dataset,
which features nearly 10,000 trajectories of pedestri-
ans, cyclists, and other dynamic agents, in particular
autonomous robots. We provide a 3D map of the envi-
ronment used as global frame for all trajectories. For
each trajectory, we provide at regular time intervals
an estimated position, velocity, heading, and rotational
velocity, as well as bounding boxes for the objects and
segmented lidar point clouds. As additional contribu-
tion, we provide a discussion which focuses on some
discernible macroscopic patterns in the data.

Keywords: Tsukuba Challenge, dataset, detection, track-
ing

1. Introduction

The annual Tsukuba Challenge offers a unique envi-
ronment to test the autonomous capabilities of a robotic
vehicle. Since the beginning of the challenge in 2007 [1],
the overarching goal is to assess autonomous robots’ ca-
pability to handle real-world scenarios by having them
navigate an unmodified course full of pedestrians, cyclists
and other agents, some behaving naturally and others in-
teracting with the robots. The 2017 challenge consisted
of autonomously navigating through an area of over two
kilometres, going through a park, pedestrian walkway and
both indoors and outdoors shopping malls. This gen-
eral course for the challenge was determined beforehand,
but it remains up to the participants to decide their spe-
cific trajectory through a course that varies wildly: from
large, open spaces to narrow corridors, as shown in Fig. 1.
As previously mentioned, the course is often dense with
other agents: adults, children, dogs, bicycles, small mo-
torized vehicles, and of course robots. While many agents
are acting in completely natural manner, the environment
also includes passersby interesting in interacting with the
robots, as well as also robot operators and safety officials.
The sheer quantity and chaotic nature of these agents
makes this area of Tsukuba a particularly challenging and
interesting test environment for autonomous navigation.

Familiar problems need to be addressed to au-
tonomously navigate the Tsukuba Challenge environment
successfully: global localization, global and local path
planning, object detection and tracking, as well as avoid-
ance capabilities. While strategies to solve these prob-
lems differ, addressing these issues represents a minimum
requirement for an autonomous mobile system in any sort
of environment, though the constraints may change with
the environment. In particular, autonomous cars on a road
network are constrained both by the vehicle dynamics and
the trajectories that comply with traffic rules. Since all
cars are bound by nearly identical constraints, their be-
havior is generally predictable. In comparison, dynamic
agents in the Tsukuba Challenge environment move at
much slower speeds than cars but are far less predictable
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Fig. 1. Top view of the course through the 2017 Tsukuba Challenge environment, with our approximate target trajectory in red. In
green, we show approximately the available, traversable terrain, disregarding small obstacles (trees, cones, tables, etc.) in this area.
We also show images of various key areas to show the available navigation space.

as there are no hard rules which constrain their motion.
Unlike road networks, all traversable terrain can be used
by any agent without restrictions, which makes our navi-
gation task significantly more difficult. In Fig. 1, we show
in green the large amount of free space available in the en-
vironment to demonstrate the leeway we have in planning
our specific trajectory. This extra degree of freedom in the
planning stage is difficult to optimize, because of the lack
of hard rules makes it difficult to predict how other agents
might traverse the environment. The strategy used by our
navigation system is therefore to simply plan a navigation
route based solely on static objects and deal with dynamic
obstacles when they are encountered.

This simple approach may be sufficient for the chal-
lenge, but it seems far from optimal. In practice, our ve-
hicle was considerably slowed down by incoming traffic,
and disturbed the natural flow of pedestrian. Ideally, we
should acknowledge in our navigation strategy that other
agents in the environment have the same goal: achiev-
ing their destination safely and without complication. In-
deed, it is fair to assume that the majority of people want
to reach their objective safely and efficiently, with differ-
ent factors having different priorities. Microscopic ap-
proaches attempt to model the behavior of agents relative
to other agents in their vicinity. In their work on Social
Force Models (SFMs), Helbing and Molnár [2] reason-
ably suggest that typical pedestrians would like to take the
shortest path to their destination, traversing the environ-
ment at some preferred velocity while maintaining their
distance from other pedestrians, as in, they want to main-
tain some personal space. This simple agent modelling
leads to macroscopic behavior that we observe in the
world, such as pedestrians moving in groups or streams

of people with similar velocity, while leaving room for
streams of agents with opposing velocity so as to avoid
collisions or having to constantly adjust their path plan-
ning. These are some sort of soft rules, or cooperative be-
haviors, guiding dynamic agents when navigating an envi-
ronment; they are not legal restrictions, simply a form of
more or less conscious teamwork which makes navigation
easier for all participating agents. A better understanding
of these behavioral patterns therefore seems important to
achieve smooth robotic navigation that does not inconve-
nience others.

On the other hand, human agents have a general under-
standing that, in some areas, these soft rules are likely to
break down, and we naturally exercise more caution there:
places such as crossroads or building entrances necessar-
ily have more chaotic traffic and agents become naturally
more cautious. Microscopic models like SFMs do not ac-
count for this type of behavior, which is entirely based on
the macroscopic setting, that is, the environment in which
the navigation takes place. As such, we hypothesize that
agent behavior is highly correlated with the layout of the
environment. With many factors at play, from the phys-
ical layout to the high level context of the environment,
it is difficult to predict behavior in complex environments
using a simple agent models. The alternative, inferring
behavior through data of pedestrian navigating the spe-
cific environment, may prove to be a better approach to
understanding dynamic agent behavior.

In order to support this stream of research, we present
a dataset of tracked agents in the 2017 Tsukuba Chal-
lenge environment as the main contribution of this work.
Given the ability to revisit the environment, we created a
detailed 3D occupancy map from point cloud data, rep-
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Fig. 2. Tracker output (top) at the Tsukuba Challenge. Dy-
namic objects are detected, with estimated bounding boxes
and trajectory shown in white. Below, we show extracted,
segmented pointclouds of a pedestrian (left) and cyclist
(right).

resenting the static objects in the environment. This en-
abled us to localize in the environment and remove the
static background from point cloud data, in turn allow-
ing us to reliably detect and track dynamic objects. We
release this dataset publicly1 and provide some tools to
analyse and visualize the data, for the convenience of the
research community. Specifically, in this dataset we com-
piled more than 8 hours of data, traversing a distance of
over 30 km and extracting nearly 10,000 dynamic object
trajectories, mainly of pedestrians but also cyclists, com-
peting robots and other dynamic objects. As shown in
Fig. 2, we segment the object every frame that we track
it, obtaining simultaneous detection and tracking informa-
tion. To summarize the contributions of this dataset, its
purpose is first for analysis of pedestrian behavior, most
related to prior pedestrian crowd modelling research [3,
4]. Unlike this prior research, our dataset can be used to
analyse more than microscopic (pedestrian-to-pedestrian)
behavior; the large scale of the environment and provided
map is intended to be used in order to analyse macro-
scopic (environment-based) pedestrian behavior, which is
the main objective of the dataset. Then, since we also
provide a large amount of tracked and segmented objects
localised in a map, this dataset can also be used for test-
ing detection, tracking and navigation algorithm. As an
additional contribution, we perform a preliminary analy-
sis of the data, discuss visible trends and propose some
applications.

This paper is structured as follows. First, we will dis-
cuss related research in Section 2, reviewing the landscape
of public datasets and discussing other relevant work. An
explanation of the method used for creating the dataset
follows in Section 3 as well as the data sanitization pro-

1. Filtered and raw data, processing tools and other scripts used in this work
are available at https://github.com/MAVRG/meidai-data-tools [Accessed
July 30, 2018]

cess in Section 4.2. Then, we give a description of the
open-source dataset in Section 4 followed by a prelimi-
nary analysis of the data in Section 5 with a discussion of
potential applications.

2. Related Work

In this section, we review some of the currently avail-
able open-source dataset with pedestrian data. There is a
large quantity of such dataset available; we will focus on
the most popular dataset in computer vision and robotics
as well as other dataset with similar objectives as ours.

Though there exist many dataset featuring pedestrian
data, pedestrian trajectory data is scarcely available in
the open-source community. The more prevalent pub-
licly available dataset is without a doubt the KITTI Vision
Benchmarking Suite by Geiger et al. [5]. While being
largely focused on comparing vision-based detection and
tracking algorithms utilizing camera images, lidar points
were also logged during data collection. By projecting
bounding boxes to the lidar frame, bounding boxes for
point clouds were made available for the portion of the
point cloud overlapping with the camera image. This la-
belled data represents a small subset of available lidar
data, but the KITTI dataset is still the most widely uti-
lized benchmarking tool even for lidar-based tasks. For
our application, actual trajectories would have to be in-
ferred from detection and tracking results. Furthermore,
for this task, detection and tracking are done in image co-
ordinates, but for behavior analysis, a global coordinate
for all available tracking information is more practical;
for most of the data available, the data collection platform
(car) is moving, so pedestrian tracks are short and only a
few tracks are seen simultaneously, making this dataset of
limited applicability for our application. Nevertheless, we
acknowledge that with all the data provided in the KITTI
dataset, including egomotion information, GPS and cal-
ibration parameters for each sensor, it could be possible
to reconstruct the pedestrian trajectories in a global frame
with considerable work.

Otherwise, there are several camera-based datasets of
pedestrian data as shown in Table 1. While some newer
datasets such as CityScapes [6] have outstanding pixel-
based segmentation of objects, the datasets are partic-
ularly tailored for benchmarking detection algorithms.
Some have discontinuous data [6, 7] making tracking im-
possible, while others lack egomotion [8, 9], information
which makes object trajectories available in local coor-
dinates only. None of the datasets provide a map of the
environment during data collection. In some cases, ego-
motion or GPS information is available which could make
map reconstruction possible, but this would be difficult
using forward facing cameras only. As previously men-
tioned, only with KITTI’s camera and point cloud data
would it be possible to reconstruct a map of the environ-
ment specifically when data collection occurred. By con-
trast, we provide a 3D point cloud map constructed pre-
cisely during data collection.
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Table 1. Comparison of various dataset with labelled pedestrian data. Under description, we note the main purpose of the dataset,
the quantity of segmented data as well as the type of objects (obj.). Under sensing, we underline the exteroceptive data provided
in the dataset. Finally, under data, we characterize the information available in the dataset: Bounding Boxes (B.B.), Segmentated
labels (pixels or point clouds) and Egomotion (Ego.) such as incremental or global localization information of the data collection
platform (N/A if point of view is stationary), object trajectory information (Tracks). Finally we indicate if a map is included, as in
a background map of the static environment serving as global coordinate frame consistent for all the data.

Description Sensing Data
Purpose Annotated Data Obj. Type Camera Lidar B.B. Seg. Ego. Tracks Map

Cityscapes [6] Semantic Seg. 25,000 frames in 50 cities 50 classes Mono – No Yes Yes No No
Daimler [7] Path Prediction 64 trajectories Pedestrians Stereo – Yes No N/A Yes No
CamVids [8] Semantic Seg. 700 frames, 345 unique obj. 32 classes Mono – No Yes No No No
Penn-Fudan [9] Detection 175 frames Pedestrians Mono – Yes Yes No N/A No
MIT tracks [3] Behavior 40,453 tracks pedestrians Mono – No No N/A No No
Walking Paths [4] Behavior 12,684 tracks pedestrians Mono – No No N/A Yes No
CalTech [10] Detection 250,000 frames, 2300 unique obj. Pedestrians Mono – Yes No Yes No No
KITTI [5] Tracking 50 sequences Ped., cars Stereo HDL-64 Yes No Yes Yes No
KITTI [5] Detection 80,000 frames Ped., car, cyclist Stereo HDL-64 Yes No Yes Yes No
Stanford [11] Detection 2400 object tracks Ped., car, cyclist – HDL-64 No Yes Yes No No
Sydney [12] Recognition 631 frames 13 classes – HDL-64 No Yes No No No
Ours Behavior 9,600 tracks Ped., cyclists Mono HDL-32 Yes Yes Yes Yes Yes

In summary, detection benchmarking datasets that
dominate the landscape of publicly available data in
robotics are unfortunately not well-suited to behavior un-
derstanding. Some datasets, such as the MIT Trajectory
Dataset [3] or the Pedestrian Walking Path Dataset [4]
were created specifically for the purpose of studying
pedestrian behavior. Both datasets were collected by
a single stationary camera overlooking a scene, which
makes all pedestrian trajectories trivially in the same
frame. However, this limits the size of the dataset; in the
MIT tracks dataset, the data is collected in a small park-
ing lot, while the Pedestrian Walking Path Dataset camera
overlooks one room in the New York Grand Central sta-
tion. The resulting research focuses therefore on micro-
scopic interactions by modeling agents [13], as was the
case with SFMs. With our dataset of pedestrian trajecto-
ries in a much larger scale environment, both microscopic
and macroscopic behavioral analysis becomes possible.

There are only a few 3D lidar-based datasets currently
available. The Sydney Urban Objects Dataset [12] and
the Stanford Object Tracks dataset [11] are slightly older
datasets which feature cropped point cloud of objects in
urban settings, such as cars and pedestrians. The latter is
particularly interesting because it features cropped object
tracks, that is, a stream of lidar points corresponding to the
same object, similar to what we are proposing. However,
those objects are not localized inside map, nor related by
some global coordinate frame, making this dataset unsuit-
able for our research objectives.

As such, the dataset proposed in this work would be
the first lidar-based dataset of localized dynamic objects,
making it very useful for the research community, in par-
ticular Tsukuba Challenge participants, giving insight on
pedestrian behavior in a real-world environment. This
dataset also has all the tools necessary to make it appli-
cable for detection, segmentation, tracking and prediction
research.

3. Dynamic Object Tracking

This section outlines the dynamic object tracking
pipeline, which consists of three distinct operations on
each point cloud supplied by the sensor: background re-
moval, clustering (detection) and tracking. However, to
perform background removal, we must first create a map
of the environment. Another requirement of this pipeline
is to be able to localize the robot within the map. The
complete detection and tracking pipeline can be seen in
Fig. 3.

3.1. Map-Making and Localization
To use this tracker, it is necessary to solve for the

robot’s egomotion. For localization, we use Autoware’s2

Normal Distributions Transform (NDT) mapping [14]
and localization module [15] augmented by odometry
data [16] which creates a point cloud map of the envi-
ronment and localizes within it through scan-matching.
With the ability to localize, we then use multiple dataset
collected in the environment to create a probabilistic 3D
occupancy grid map (voxel grid) of the environment using
Octomap [17]. Using multiple dataset obtained at differ-
ent times allows to filter out objects that are not part of
the background, but appeared static in one or more data
logs. Fig. 4 shows the occupancy grid map created for
background removal.

3.2. Background Removal and Clustering
With a background map, we can now start to detect and

track objects within the map. For every scan, we localize
the vehicle in the map, perform ground removal [18], then
compare the scan with the background map: points that
fall within occupied voxels of the background map are
removed. While there often remains background points
due to lidar noise or localization error, these are usually
too few and far between to be significant.

2. https://github.com/CPFL/Autoware [Accessed July 30, 2018]
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Fig. 3. Work flow of the dynamic object tracker. Both
odometry and 3D lidar information is used from the robot.
First using k data-collection runs in the environment, two
maps of the static background are created, one for local-
ization and one for background removal. After this pre-
processing, we can localize, remove the static background,
cluster the remaining points to detect and finally track a large
number of dynamic objects on-line.

Fig. 4. Top view of the voxel grid map created of the
Tsukuba Challenge environment using Octomap.

The remaining points are clustered through PCL’s Eu-
clidean Cluster Extraction3 [19]. Their algorithm clusters
points according to whether they meet some set distance
threshold. We varied this threshold depending on (1) the
distance of the points from the sensor and (2) if they are
on the same or neighbouring lidar ring (from the same

3. Available at: http://pointclouds.org/ [Accessed July 30, 2018]

laser), to better account for the sparsity of points in re-
gions further from the sensor. Then, we use a height filter
to remove groups that are either too small or too big to be
attributed to relevant dynamic objects – we keep clusters
that are between 80 cm and 200 cm tall.

Unfortunately, for pedestrian tracking, this is often in-
sufficient when it comes to groups of people walking close
together. An overly strict threshold will sometimes over-
segment one person into multiple tracking targets while
a more lenient threshold may sometimes cause under-
segmentation. To solve this problem, use a slightly lenient
threshold and then further segment using a sub-clustering
technique based on height, also from PCL. The algorithm
examines the distribution of point cloud heights and looks
for local height maxima. When there are two clear local
maxima approximately shoulder width apart (≈ 40 cm),
there are likely two or more people. We therefore itera-
tively sub-cluster the point cloud until there is only one
clear maxima. The clustering result before and after sub-
clustering can be seen in Fig. 5.

3.3. Data Association
An important step in obtaining pedestrian trajectories

is data association between observations over time, to de-
termine which observations belong to the same track. At
each time step, we compute a score-based likelihood to re-
flect how likely each new observation (point cloud cluster)
belongs to some track. Then, we use Munkres assignment
algorithm [20] to pair observations to tracks, maximizing
the scores. The score is based on three elements:

1. Nearest Neighbour Score: euclidean distance be-
tween centroids,

2. Velocity Score: distance between observed centroid
and predicted centroid based on current velocity, and

3. Shape Score: average Hausdorff distance between
the new observation and last observation of the
track [21].

3.4. Particle Filtering
Each detected objects is tracked in real-time using its

own particle filter. Each observation that is not assigned
to any track during data association is a potential candi-
date for tracking and is initialized with a new particle filter
centred at the observation’s centroid. Accordingly, tracks
that have not been paired with any observations for more
than five time steps are retired. Each track has a state
estimated from its particles that comprises 2D position,
heading, and speed. Particles are weighted according to
the distance between the particle’s position and the new
observation’s centroid, and resampled and normalized at
each time step. During sampling, we assume constant
velocity and use a Gaussian distribution. Particles with
weights less than the minimal weight it would receive if
all particles were equally weighted, are discarded and re-
placed by a new particle initialized at the track’s estimated
position. Particle clouds associated with tracked objects
are shown in Fig. 6.
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3.5. Trajectory Smoothing
Since the output of the particle filter tracking is discrete

points, it is useful to apply spline approximation to obtain
a smooth estimate of trajectory. We use Scipy’s4 cubic
b-splines [22] off-line on the output from the particle fil-
ter tracking, as well as on-line to extrapolate the track’s
future position to obtain heading, based on up to 50 of
the track’s previous estimated positions. When there are
fewer than the necessary four data points for spline ex-
trapolation, we assume constant velocity and infer head-
ing from the track’s velocity.

An example of the tracker output is shown in Fig. 2.
From this figure, we can see that some background noise
remains and but not clustered into objects, as they do
not fit aforementioned criteria. Occasionally, static back-
ground can be clustered and considered a dynamic objects
for a short period of time. To deal with this, we implement
a filter for false positives, as explained in Section 4.2.

4. Dataset

In this section, we present the Meidai Autonomous
Driving (MAD) Team Tsukuba Challenge Dynamic Ob-
ject Tracks dataset, which features point cloud data of
tracked dynamic objects collected in the Tsukuba Chal-
lenge environment shown in Fig. 1. We first show the
data collection platform in Section 4.1, then discuss how
the raw data is noisy and must be sanitized, in Section 4.2.
Finally, present the dataset after post-processing in Sec-
tion 4.3.

4.1. Robot
The dataset was collected with the platform shown in

Fig. 7. It is a manually operated data collection platform,
with a complete sensor suite: PointGrey Flea3 camera,
Velodyne HDL-32 3D lidar, Hokuyo UTM30-LX 2D li-
dar and Xsens MTi-300 inertial motion unit. We also have
motors attached to the wheels, purely for the attached
encoders providing us with wheel odometry. We record
all sensor information during data collection, but in this
work we only ever use the 3D lidar and wheel odometry.
As previously mentioned, robot egomotion is estimated
through NDT scan matching [14] supplemented by odom-
etry [16], to localize the robot inside the map.

4.2. Post-Processing
As discussed in Section 3, due to sensor noise and new

static objects, the background removal is far from perfect.
As such, static background is often picked up as objects
and tracked for a short period of time, with objects natu-
rally having have near-zero velocity. However, they tend
to have erratic heading as, without any motion, the parti-
cle filter cannot accurately weigh different headings. Our
dataset is littered with these false positives which must be
removed for proper analysis of pedestrian behavior. We

4. Available at: https://scipy.org/ [Accessed July 30, 2018]

therefore look at the statistics of different trajectories and
filter the data that is likely due to static background.

Before filtering, the dataset had the following statistics,
while the statistics post-filtering are shown in Table 2.

• Total number of trajectories: 40,129

• Average path length of trajectories: 5.20 m

• Average distance covered by trajectories: 3.78 m

• Average track length (time): 5.04 s

• Average speed: 1.25 m/s

• Average rotational speed: 1.88 rad/s

Looking at the histogram distribution for the above statis-
tics, we can see that a large majority of the tracks are in
fact due to noise. Many are very short, both in terms of
distance and time, which is not particularly helpful for
prediction. There are also a few long tracks, each be-
ing the robot operator’s trajectory. Nearly 30% of tracks
have near zero average speed, which is again likely due to
static background. Average bike speed on public roads is
around 4 m/s, and as the environment is a dense pedestrian
area, it is likely that objects tracked with very high speeds
are due to tracker error. Finally, we previously mentioned
that static objects have erratic heading, so filtering high
rotational velocity is also a good technique. Through trial
and visualization, we evaluated the impact of several fil-
ters and found that trajectories are likely to correspond to
background noise if:

• path length was lower than 4 meters or greater than
100 meters – this would remove 68% of tracks,

• distance travelled was lower than 3 meters or greater
than 100 meters – 70% of tracks,

• time tracked was lower than 2 seconds or greater than
60 seconds – 36% of tracks,

• average speed was lower than 0.2 m/s or greater than
6.0 m/s – 30% of tracks,

• average rotational velocity was greater than 3.0 rad/s
– about 60% of observations.

The final values of the filter were largely determined by
examining the results through visualization, but we can at
least discuss the general idea.

First, note we use two different metrics to measure path
distance because we want to avoid two distinct scenarios.
Path length measures the total distance travelled by a dy-
namic object, calculated by adding up incremental mo-
tion at each time step; if path length is very small then
the object is essentially stationary and very likely static
background, however we don’t want to make the lower
bound too large because short path lengths are possible
especially for faster objects. On the other hand, detec-
tions due to background and lidar noise are usually un-
stable and the associated random error in tracking result
can accumulate over time. Since this instability manifests
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(a) A cluster of pedestrians on the Tsukuba Challenge path.

(b) Output of the clustering algorithm. Note the three pedes-
trian on the right side of the image clustered together, one of
which is heavily occluded.

(c) Output after iterative sub-clustering. We can see that the
three clustered pedestrian were split up, with the occluded one
no longer classified as a pedestrian due to small cluster size.

Fig. 5. Example of better pedestrian clustering results due
to the head-based sub-clustering method used. Note that the
colors are chosen randomly and seperately by the clustering
and sub-clustering algorithms.

itself as a sort of rapid vibration of the object position,
we can also filter by absolute distance travelled by the
object, as in the difference between initial and final po-
sition. We threshold this slightly lower than path length
to avoid filtering trajectories that largely feature rotations,
for example a pedestrian walking around a corner. In both
cases, we want to avoid tracking very long trajectories,
since robot operators or Tsukuba Challenge officials are
often tracked but not representative of normal pedestrian
behavior.

Similarly, we threshold trajectories that are tracked for
a very short time span because these are usually due to
lidar noise or localization error, which makes background
removal inaccurate. Again, dynamic objects tracked for a
very long amount of time are rare and all due to operators,

Fig. 6. Visualization of the 2D particle filter tracking of dy-
namic objects. Points associated with dynamic objects are
given a random color per object. Filter particles are shown
in a colour gradient according to their weight, largely low
weights in red and highest weights in green. The red-blue-
green axes shown represent the position of the various sen-
sors on the robot.

Fig. 7. The MinBot data collection platform and its sensor
suite. Note we only use the Velodyne HDL-32 for detection
and tracking. Also, only the motors’ built-in encoders are
used for additional robustness during localization and map-
ping.

Table 2. General information and statistics about the
Tsukuba Challenge Dynamics Object Tracks dataset.

Duration of data collection ≈8 hours
Number of runs through the course 15 runs
Distance travelled during data collection ≈30 km
Number of dynamic object trajectories 9635
Number of segmented point clouds ≈500,000
Average duration of trajectories 10.56 s
Average trajectory length 12.65 m
Average velocity of objects 1.45 m/s
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Fig. 8. Collection of good trajectories (green) and the ones filtered out (red). A large number of tracks are removed in the tent area
and starting area of the challenge as they usually correspond to fairly static robot operators or background noise. The cars on the
road also create several false positives, but these are also automatically filtered.

which are undesirable.
Then, we also filter trajectories based on their average

absolute velocity (speed) and rotational velocity. We fil-
ter out very low speeds because those likely correspond
to static objects. However, the statistic we are using is
average speed and we don’t want to filter out trajecto-
ries corresponding to pedestrians standing still for an im-
portant length of time; as such, we threshold the lower
bound of absolute speed at 0.2 m/s to filter out near zero
average speeds only. Then, Morales et al. [23] provides
us with a good estimate of the preferred human walking
speed, somewhere between 0.9 m/s and 1.4 m/s, and we
expect bicycles to be significantly faster, which provides
us an idea for an upper bound. We still want to filter very
high speeds as those are usually due to cars, or poor track-
ing results caused by error in localization or data associa-
tion, which changes the global position of a tracked object
and gives it huge velocity. We chose a conservative upper
bound of 6.0 m/s to definitely avoid filtering cyclists. Fi-
nally, we filter high rotational velocities as we have ob-
served that background noise picked as objects usually
have erratic heading, but don’t filter low rotational speeds
as this just indicates a straight trajectory which is not nec-
essarily odd.

Cumulatively, these filters about 80% of the data, which
represents a high rate of false positives. The dataset still
contains nearly 10,000 trajectories after filtering, so while
some potentially good trajectories may have been filtered
due to strict thresholds, we have successfully retained
more than enough data for analysis. In Fig. 8, we show
the trajectories who pass all the filters in green, while the
removed ones are in red. The quantity of data makes visu-

alization difficult but the majority of red trajectories can
be seen to coincide with buildings and other places that
are not pedestrian areas. Glass buildings, as well as far
away objects, tend to produce noisy data, explaining why
background detection fails. The tent area, where teams
prepared their robotics platform, as well as the start area
for the challenge featured largely static or erratic trajec-
tories. Other areas like roads, near the bottom of Fig. 8,
lead to noise from vehicles which can be tracked for a
few frames. As previously mentioned, cluster size is
taken into consideration during detection so full cars are
not often tracked, but given certain line of sight or the
right occlusions, point clouds caused by cars can be mis-
taken to be a pedestrian or cyclist. However, the resulting
tracks are obviously not pedestrian-like and were filtered
through post-processing.

4.3. Sanitized Dataset

As the main contribution for this work, we provide
a sanitized dataset of dynamic agent tracks. Table 2
compiles some information and statistics concerning the
dataset, after the filtering. In Figs. 9–12, we show the dis-
tribution of the aforementioned statistics on our dataset.
Particularly in Fig. 11, we see a clear peak around the
typical pedestrian velocity of 1.2 m/s.

The sanitized dataset provides the following informa-
tion:

• Map of the Tsukuba Environment: 3D point cloud
map and 2D occupancy grid map of the Tsukuba
challenge environment.
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Fig. 9. Distribution of distance travelled (meters) after fil-
tering trajectories with distance travelled lower than 3 meters
and greater than 100 meters. The average distance travelled
for the dataset after filtering is 11.14 meters.

Fig. 10. Distribution of time tracked (seconds) after fil-
tering trajectories tracked for less than 2 seconds or longer
than 60 seconds. The average time tracked after filtering is
10.56 seconds.

Fig. 11. Distribution of average speed (m/s) after filtering
out trajectories with average speeds lower than 0.2 m/s or
greater than 6.0 m/s. The average object speed in the dataset
after filtering is 1.45 m/s.

Fig. 12. Distribution of average absolute rotational velocity
(rad/s) after filtering out trajectories with average rotational
speeds higher than 3.0 rad/s. The average rotational speed
after filtering is 0.96 rad/s.

• Robot Trajectory: position of the robot inside the
map at each timestamp.

• Dynamic Object Locations: 2D and 3D locations of
dynamic objects, with object ID and timestamp, lo-
calized in a global coordinate frame.

• 2D Smoothed Trajectories: b-spline-derived smooth
trajectories.

• Velocity and Heading: derived velocity and heading
from the smooth trajectory for each dynamic objects.

• Bounding Box: 3D bounding boxes and centroid lo-
cation of each object, and

• Object Point Clouds: 3D points inside each objects
bounding box.

We also provide sample code for extracting the data and
visualizing the trajectories and point clouds.

5. Discussion

In this section, we show some visualizations of the
data provided in the Tsukuba Challenge Dynamic Tracks
Dataset and provide some preliminary analysis based on
the distribution of absolute velocity, then heading.

5.1. Absolute Velocity
Figure 8 shows the difficulty with visualization of tra-

jectories. A better approach is to color each trajectory
based on the absolute velocity. In Fig. 13 we see the en-
tire dataset of trajectories colored by speed. The scale of
the map still makes it difficult to see any patterns, and tra-
jectories are overlapping with each other, but we can at
least see that faster trajectories are far more prevalent in
some areas of the map, namely the larger main roads. To
get a better understanding of the data, we will focus on
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Fig. 13. Plot of all trajectories in the dataset, colored by average speed of the tracked object. At this scale, it is difficult to analyze
the data, but we can discern areas where almost exclusively used by pedestrians due to the absence of fast, yellow trajectories. For
a clearer analysis, we focus on three areas, the first in red, second in green and third in blue, with top down images of each area
provided with a color-coded border.

three smaller zones. Zone 1 is the first major intersection
of challenge which robots pass by multiple times, labelled
in red in Fig. 13. It connects the main pedestrian road to
Tsukuba Capio Cultural Center, the Dayz Town Shopping
Center and several connected streets. Zone 2, labelled in
green, is a large open space at the intersection of a shop-
ping area with many businesses and shops, and the two
main streets in the challenge, perpendicular to the each
other. Zone 3, labelled in blue, is a narrow shopping strip
with an indoor section on the right hand side. For each
one, we provide two separate figures, one displaying the
trajectories colored by velocity on the left, and colored by
heading on the right.

Looking more closely at the speed distributions in the
three zones, we can definitely see that only some areas can
be navigated quickly by bicycles, or some other motorized
vehicles. Note higher speeds are associated with brighter
colors, with 3.0 m/s shown in bright green and 4.0 m/s
and above shown in yellow, in the left-hand side figures.
In Fig. 14, it is clear that the two walkways leading to the
Tsukuba Capio Cultural Center, labelled (A) and (B), are
not convenient for rapid navigation by bicycles and that
obstacles tend to be slower in this area. In Fig. 15, we
can see the intersection is well-suited for rapid navigation,
with the exception of the shopping area in the bottom left,
labelled (A), which narrows and forces slower navigation.
In the third zone, shown in Fig. 16, the narrow shopping

area is definitely unsuitable for fast navigation, as all tra-
jectories in this area are about pedestrian walking speed.
However, the main road at the entrance of the shopping
area, marked with (D), does have some faster moving ob-
jects. Knowing where we can expect fast moving obsta-
cles could perhaps be very useful for safer navigation. For
example, we can design our planner to decrease the robot
velocity significantly when transitioning between an area
with slower average navigational speeds, to an area with
potentially fast obstacles.

5.2. Heading
In the heading plots on the right-hand side, we focus on

the direction of the trajectories to get a better understand-
ing of the network of pedestrian tracks. The first zone
in Fig. 14 is clearly a complex intersection, with differ-
ent roads being perpendicular to each other. The bulk of
the traffic is on the main horizontal road, but the pedestri-
ans going from the Tsukuba Capio, labelled (A) and (B),
to the pedestrians walkway labelled (C) cut through the
main road diagonally and could potentially cause danger-
ous situation. However, near the center of the zone, in
the area labelled (D), pedestrian motion is not particularly
constrained nor dense, so we can understand this to be an
open space that is not so often used. As an example of
how this data could influence our planning, perhaps our
robots could navigate freely towards this open space to
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Fig. 14. Zone 1 labelled in red in Fig. 13, trajectories colored by velocity on the left and colored by heading on the right. Walkways
marked (A) and (B) lead to the Tsukuba Capio Cultural Center.

Fig. 15. Zone 2 labelled in green in Fig. 13, trajectories colored by velocity on the left and colored by heading on the right. It is the
main intersection navigated multiple times during the challenge and has multiple stores and points of interests. The various hotspots
as determined by the data, particularly popular store entrances, are labelled in red.

Fig. 16. Zone 3 labelled in blue in Fig. 13, trajectories colored by velocity on the left and colored by heading on the right. It
is largely a narrow shopping strip with an indoor section. Various hotspots as determined by the data, particularly popular store
entrances, are labelled in transparent red.
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first survey the scene, before engaging in the dangerous
intersection. This may be a safer alternative than making
the tight right turn with limited visibility, near the area
labelled (E).

The second area, shown in Fig. 15 is the other major
intersection in the Tsukuba Challenge, which robots have
to pass through three times. The heading plot definitely
motivates us to try and estimate pedestrian networks from
this data; while this area is very wide and open, there
seems to be some clear preferred routes by pedestrians.
First, note the very clustered, dark blue trajectories as
well as the yellow trajectories connecting the two areas
labelled (A). An almost mirrored pattern can be seen in
purple and green on the other side, with trajectories con-
necting the two areas labelled (B). Furthermore, the nar-
row side-walk on the top side of the main path, labelled
(C), seems to be much more frequently used by pedestri-
ans going to the left, with their trajectories in light blue.
The pedestrians going to the right, shown in red, are more
frequent on the lower side of that road, at the level labelled
(D). These fairly clear patterns motivates us to perform a
more robust, probabilistic analysis of these motion pat-
terns as future work.

We can get some similar insight in third zone in Fig. 16.
Interestingly, we can see that pedestrians seem to pre-
fer navigating this looping shopping area in counter-
clockwise fashion. Since this is opposite as the Tsukuba
Challenge Course, we cannot attribute this to tracking
other robot operators. However, we can clearly see
streams of pedestrians disrupting this flow, as they move
from shop to shop. Areas labelled (A) and (B) show how
several pedestrian navigate between opposing stores, per-
pendicular to the main road. The situation labelled in (C)
is more complicated, as there are three nearby store en-
trances again disrupting the flow of traffic. These repre-
sent some clear areas that warrant special caution during
navigation, as pedestrians may emerge from stores and
interfere with the robot without allowing much reaction
time. Otherwise, just outside the shopping area in the area
labelled (D), we can also see some preferred trajectory,
based on heading.

Additionally, from this dataset, we can discern the en-
trances of various popular stores in the area, which is not
obvious from the point cloud map alone. We note those
with red circles on our heading maps in Figs. 15 and 16.
We can potentially take this into consideration during nav-
igation, avoiding these hotspots in the environment.

From this superficial, preliminary analysis, we believe
some interesting research into macroscopic pedestrian be-
havior could be performed using this dataset. While we do
not touch on it here, we also include the temporal relation-
ship between tracks, so microscopic interactions between
pedestrians could also be studied. Finally, we include seg-
mented pointclouds for the each dynamic tracks, which
can further lidar-based detection research as well as dy-
namic object modelling from lidar data.

6. Conclusion

Navigation in social environments poses unique chal-
lenges that go significantly beyond detection and tracking
of dynamic objects. In order to be more socially conscious
when planning our navigation in public environments, we
need a better understanding of how pedestrians navigate
specific environments. While previous work can predict
some general behavior in simple environments, the situ-
ation is much more complex in real-world scenarios and
using data driven methods to understanding pedestrian be-
havior is likely a better option in those circumstances. Un-
fortunately, the current research community does not have
publicly available data that conveniently enables this av-
enue of research.

As such, the main contribution of this work is a sani-
tized dataset of tracked dynamic object in the environment
of the 2017 Tsukuba Challenge. As this challenge is an
annual event, it is an ideal test case for the long-term and
large-scale behavioral analysis of dynamic agents, mainly
pedestrians, in real-world settings. The dataset features
nearly 10,000 trajectories of pedestrians, cyclists, robots
and other types of slow-moving vehicles, all sharing this
public space. The presence of several participants in the
Tsukuba Challenge creates an environment where pedes-
trian are aware of the scarce but non-negligence pres-
ence autonomous vehicles and perhaps adjust their be-
havior accordingly. This event creates an environment
which effectively represents a future where humans and
machine share public space commonly. We reiterate that
it is therefore essential to have a better understanding of
macroscopic human navigation as well as microscopic in-
teractions with robots. With this dataset and the tools
we provide, we support research specifically on macro-
scopic pedestrian behavior, as well as the human-machine
interaction element which makes these dense pedestrian
environment so challenging for Tsukuba Challenge par-
ticipants. As we provide bounding boxes and segmented
point clouds, this dataset can additionally be used for tra-
ditional detection and tracking tasks.

As future work, we want to perform an in-depth anal-
ysis of the trajectory data to estimate probabilistic pedes-
trian road networks, which we plan to use to improve our
tracking and planning algorithms. We also plan to man-
ually label object classes and use it as training for lidar-
based supervised detection algorithms. To assess the ac-
curacy of the data collected, we also plan to conduct rigor-
ous benchmarking of the detection and tracking pipeline
to obtain an estimate of the accuracy and precision of the
collected data.
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